Radiation-force technique to monitor lesions during ultrasonic therapy.
نویسندگان
چکیده
This report describes a monitoring technique for high-intensity focused ultrasound (US), or HIFU, lesions, including protein-denaturing lesions (PDLs) and those made for noninvasive cardiac therapy and tumor treatment in the eye, liver and other organs. Designed to sense the increased stiffness of a HIFU lesion, this technique uniquely utilizes the radiation force of the therapeutic US beam as an elastographic push to detect relative stiffness changes. Feasibility was demonstrated with computer simulations (treating acoustically induced displacements, concomitant heating, and US displacement-estimation algorithms) and pilot in vitro experimental studies, which agree qualitatively in differentiating HIFU lesions from normal tissue. Detectable motion can be induced by a single 5 ms push with temperatures well below those needed to form a lesion. Conversely, because the characteristic heat diffusion time is much longer than the characteristic relaxation time following a push, properly timed multiple therapy pulses will form lesions while providing precise control during therapy.
منابع مشابه
Monitoring thermally-induced lesions with supersonic shear imaging.
Thermally-induced lesions are generally stiffer than surrounding tissues. We propose here to use the supersonic shear imaging technique (SSI) for monitoring high-intensity focused ultrasound (HIFU) therapy. This new elasticity imaging technique is based on remotely creating shear sources using an acoustic radiation force at different locations in the medium. In these experiments, an HIFU probe ...
متن کاملSingle-element focused ultrasound transducer method for harmonic motion imaging.
The harmonic motion imaging (HMI) technique for simultaneous monitoring and generation of ultrasound therapy using two separate focused ultrasound transducer elements was previously demonstrated. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force using a single focused-ultrasound element. A wave propagation simulation model firs...
متن کاملAcoustic radiation force-based elasticity imaging methods.
Conventional diagnostic ultrasound images portray differences in the acoustic properties of soft tissues, whereas ultrasound-based elasticity images portray differences in the elastic properties of soft tissues (i.e. stiffness, viscosity). The benefit of elasticity imaging lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have different mechanical prop...
متن کاملReal-Time Monitoring Of Regional Tissue Elasticity During FUS Focused Ultrasound Therapy Using Harmonic Motion Imaging
The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, ...
متن کاملInvestigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy
Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose. In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ultrasound in medicine & biology
دوره 29 11 شماره
صفحات -
تاریخ انتشار 2003